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Abstract

Temporal knowledge graph, serving as an effective way
to store and model dynamic relations, shows promising
prospects in event forecasting. However, most temporal
knowledge graph reasoning methods are highly dependent on
the recurrence or periodicity of events, which brings chal-
lenges to inferring future events related to entities that lack
historical interaction. In fact, the current moment is often the
combined effect of a small part of historical information and
those unobserved underlying factors. To this end, we pro-
pose a new event forecasting model called Contrastive Event
Network (CENET), based on a novel training framework of
historical contrastive learning. CENET learns both the his-
torical and non-historical dependency to distinguish the most
potential entities that can best match the given query. Simul-
taneously, it trains representations of queries to investigate
whether the current moment depends more on historical or
non-historical events by launching contrastive learning. The
representations further help train a binary classifier whose
output is a boolean mask to indicate related entities in the
search space. During the inference process, CENET employs
a mask-based strategy to generate the final results. We evalu-
ate our proposed model on five benchmark graphs. The results
demonstrate that CENET significantly outperforms all exist-
ing methods in most metrics, achieving at least 8.3% relative
improvement of Hits@1 over previous state-of-the-art base-
lines on event-based datasets.

1 Introduction
Knowledge Graphs (KGs), serving as the collections of hu-
man knowledge, have revealed promising expectations in
the field of natural language processing (Sun et al. 2020;
Wang et al. 2021), recommendation system (Wang et al.
2019), and information retrieval (Liu et al. 2018), etc. A tra-
ditional KG is usually a static knowledge base that uses a
graph-structured data topology to integrate facts (also called
events) in the form of triples (s, p, o), where s and o denote
subject and object entities respectively, and p as a relation
type means predicate. In the real world, knowledge evolves
continuously, inspiring the construction and application of
the Temporal Knowledge Graphs (TKGs), where the fact has
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Figure 1: An example of TKG and challenges of existing
methods.

extended from a triple (s, p, o) to a quadruple with a times-
tamp t, i.e., (s, p, o, t). As a result, a TKG consists of mul-
tiple snapshots, and the facts in the same snapshot co-occur.
Figure 1 (a) shows an example of TKG consisting of a se-
ries of international political events, where some events may
occur repeatedly, and new events will also emerge.

TKGs provide new perspectives and insights for many
downstream applications, e.g., policymaking (Deng, Rang-
wala, and Ning 2020), stock prediction (Feng et al. 2019),
and dialogue systems (Jia et al. 2018), thus triggering in-
tense interests in TKG reasoning. In this work, we focus on
forecasting events (facts) in the future on TKGs, which is
also called graph extrapolation. Our goal is to predict the
missing entities of queries like (s, p, ?, t) for a future times-
tamp t that has not been observed in the training set.

Many efforts (Garcia-Duran, Dumančić, and Niepert
2018; Jin et al. 2020) have been made toward modeling
the structural and temporal characteristics of TKGs for fu-
ture event prediction. Some mainstream examples (Jin et al.
2020; Li et al. 2021b) make reference to known events in his-
tory, which can easily predict repetitive or periodic events.
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However, in terms of the event-based TKG Integrated Cri-
sis Early Warning System, new events that have never oc-
curred before account for about 40% (Boschee et al. 2015).
It is challenging to infer these new events because they have
fewer temporal interaction traces during the whole timeline.
For instance, the right part of Figure 1 (b) shows the query
(the United States, Negotiate, ?, t+1) and its correspond-
ing new events (the United States, Negotiate, Russia, t+1),
where most existing methods often obtain incorrect results
over such query due to their focus on the high frequent re-
curring events. Additionally, during the inference process,
existing methods rank the probability scores of overall can-
didate entities in the whole graph without any bias. We argue
that the bias is necessary when approaching the missing en-
tities of different events. For repetitive or periodic events,
models are expected to prioritize a few frequently occurring
entities, and for new events, models should pay more atten-
tion to entities with less historical interaction.

In this work, we will go beyond the limits of historical
information and mine potential temporal patterns from the
whole knowledge. To elaborate our design clearer, we call
the past events associated with the entities in the current
query (s, p, ?, t) historical events, and others non-historical
events. Their corresponding entities are called historical and
non-historical entities, respectively. We will give formal
definitions in Section 3.1. We intuitively consider that the
events in TKG are not only related to their historical events
but also indirectly related to unobserved underlying factors.
The historical events we can see are only the tip of the
iceberg. We propose a novel TKG reasoning model called
CENET (Contrastive Event Network) for event forecast-
ing based on contrastive learning. Given a query (s, p, ?, t)
whose real object entity is o, CENET takes into account
its historical and non-historical events and identify signif-
icant entities via contrastive learning. Specifically, a copy
mechanism-based scoring strategy is first adopted to model
the dependency of historical and non-historical events. In ad-
dition, all queries can be divided into two classes according
to their real object entities: either the object entity o is a his-
torical entity or a non-historical entity. Therefore, CENET
naturally employs supervised contrastive learning to train
representations of the two classes of queries, further helping
train a classifier whose output is a boolean value to identify
which kind of entities should receive more attention. During
the inference, CENET combines the distribution from the
historical and non-historical dependency, and further con-
siders highly correlated entities with a mask-based strategy
according to the classification results.

The contributions of our paper are summarized as follows:

• We propose a TKG model called CENET for event fore-
casting. CENET can predict not only repetitive and peri-
odic events but also potential new events via joint inves-
tigation of both historical and non-historical information;

• To the best of our knowledge, CENET is the first model
to apply contrastive learning to TKG reasoning, which
trains contrastive representations of queries to identify
highly correlated entities;

• We conduct experiments on five public benchmark

graphs. The results demonstrate that CENET outper-
forms the state-of-the-art TKG models in the task of
event forecasting.

2 Related Work
2.1 Temporal Knowledge Graph Reasoning
There are two different settings for TKG reasoning: interpo-
lation and extrapolation (Jin et al. 2020). Given a TKG with
timestamps ranging from t0 to tn, models with the interpo-
lation setting aim to complete missing events that happened
in the interval [t0, tn], which is also called TKG completion.
In contrast, the extrapolation setting aims to predict possible
events after the given time tn, i.e., inferring the entity o (or
s) given query q = (s, p, ?, t) (or (?, p, o, t)) where t > tn.

Models in the former case such as HyTE (Dasgupta,
Ray, and Talukdar 2018), TeMP (Wu et al. 2020), and
ChronoR (Sadeghian et al. 2021) are designed to infer miss-
ing relations within the observed data. However, such mod-
els are not designed to predict future events that fall out of
the specified time interval. In the latter case, various meth-
ods are designed for the purpose of future event prediction.
Know-Evolve (Trivedi et al. 2017) is the first model to learn
non-linearly evolving entity embeddings, yet unable to cap-
ture the long-term dependency. xERTE (Han et al. 2020)
and TLogic (Liu et al. 2022) provide understandable ev-
idence that can explain the forecast, but their application
scenarios are limited. TANGO (Han et al. 2021) employs
neural ordinary differential equations to model the TKGs.
A copy-generation mechanism is adopted in CyGNet (Zhu
et al. 2021) to identify high-frequency repetitive events.
CluSTeR (Li et al. 2021a) is designed with reinforcement
learning, yet constraining its applicability to event-based
TKGs. There also emerge some models which try to adopt
GNN (Kipf and Welling 2016) or RNN architecture to cap-
ture spatial temporal patterns. Typical examples include RE-
NET (Jin et al. 2020), RE-GCN (Li et al. 2021b), HIP (He
et al. 2021), and EvoKG (Park et al. 2022).

2.2 Contrastive Learning
Contrastive learning as a self-supervised learning paradigm
focuses on distinguishing instances of different categories.
In self-supervised contrastive learning, most methods (Chen
et al. 2020) derive augmented examples from a randomly
sampled minibatch of N examples, resulting in 2N samples
to optimize the following loss function given a positive pair
of examples (i, j). Equation 1 is the contrastive loss:

Li,j = − log
exp(zi · zj/τ)∑2N

k=1,k ̸=i exp(zi · zk/τ)
, (1)

where zi is the projection embedding of sample i and τ ∈
R+ denotes a temperature parameter helping the model learn
from hard negatives. In the case of supervised learning, there
is a work (Khosla et al. 2020) generalizing contrastive loss to
an arbitrary number of positives, which separates the repre-
sentations of different instances using ground truth labels.
The obtained contrastive representations can promote the
downstream classifier to achieve better performance com-
pared with vanilla classification model.
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Figure 2: The overall architecture of CENET. The left part learns the distribution of entities from both historical and non-
historical dependency. The right part illustrates the two stages of historical contrastive learning, which aims to identify highly
correlated entities, and the output is a boolean mask vector. The middle part is the mask-based inference process that combines
the distribution learned from the two kinds of dependency and the mask vector to generate the final results.

3 Method
As shown in Figure 2, CENET captures both the historical
and non-historical dependency. Simultaneously, it utilizes
contrastive learning to identify highly correlated entities. A
mask-based inference process is further employed for rea-
soning performing. In the following parts, we will introduce
our proposed method in detail.

3.1 Preliminaries
Let E ,R, and T denote a finite set of entities, relation types,
and timestamps, respectively. A temporal knowledge graph
G is a set of quadruples formalized as (s, p, o, t), where s ∈
E is a subject (head) entity, o ∈ E is an object (tail) entity,
p ∈ R is the relation (predicate) occurring at timestamp t
between s and o. Gt represents a TKG snapshot which is
the set of quadruples occurring at time t. We use boldfaced
s, p, o for the embedding vectors of s, p, and o respectively,
the dimension of which is d. E ∈ R|E|×d is the embeddings
of all entities, the row of which represents the embedding
vector of an entity such as s and o. Similarly, P ∈ R|R|×d is
the embeddings of all relation types.

Given a query q = (s, p, ?, t), we define the set of histor-
ical events as Ds,p

t and the corresponding set of historical
entities asHs,p

t in the following equations:

Ds,p
t =

⋃
k<t

{(s, p, o, k) ∈ Gk}, (2)

Hs,p
t = {o|(s, p, o, k) ∈ Ds,p

t }. (3)

Naturally, entities not inHs,p
t are called non-historical enti-

ties, and the set {(s, p, o′, k)|o′ ̸∈ Hs,p
t , k < t} denotes the

set of non-historical events, where some quadruples may not
exist in G. It is worth noting that we also use Ds,p

t to repre-
sent the set of historical events for a current event (s, p, o, t).

If an event (s, p, o, t) itself does not exist in its correspond-
ing Ds,p

t , then it is a new event. Without loss of generality,
we detail how CENET predicts object entities with a given
query q = (s, p, ?, t) in the following parts.

3.2 Historical and Non-historical Dependency
In most TKGs, although many events often show repeated
occurrence pattern, new events may have no historical events
to refer to. To this end, CENET takes not only historical but
also non-historical entities into consideration. We first in-
vestigate the frequencies of historical entities for the given
query q = (s, p, ?, t) during data pre-processing. More
specifically, we count the frequencies Fs,p

t ∈ R|E| of all
entities served as the objects associated with subject s and
predicate p before time t, as shown in Equation 4:

Fs,p
t (o) =

∑
k<t

|{o|(s, p, o, k) ∈ Gk}|. (4)

Since we cannot count the frequencies of non-historical en-
tities, CENET transforms Fs,p

t into Zs,p
t ∈ R|E| where the

value of each slot is limited by a hyper-parameter λ:

Zs,p
t (o) = λ · (ΦFs,p

t (o)>0 − ΦFs,p
t (o)=0). (5)

Φβ is an indicator function that returns 1 if β is true and 0
otherwise. Zs,p

t (o) > 0 represents the quadruple (s, p, o, tk)
is a historical event bound to s, p, and t (tk < t), while
Zs,p
t (o) < 0 indicates that the quadruple (s, p, o, tk) is a

non-historical event that does not exist in G. Next, CENET
learns the dependency from both the historical and non-
historical events based on the input Zs,p

t . CENET adopts a
copy mechanism based learning strategy (Gu et al. 2016) to
capture different kinds of dependency from two aspects: one
is the similarity score vector between query and the set of
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entities, the other is the query’s corresponding frequency in-
formation with copy mechanism.

For historical dependency, CENET generates a latent con-
text vector Hs,p

his ∈ R|E| for query q, which scores the histor-
ical dependency of different object entities:

Hs,p
his = tanh(Whis(s⊕ p) + bhis)ET︸ ︷︷ ︸

similarity score between q and E

+Zs,p
t , (6)

where tanh is the activation function, ⊕ represents the con-
catenation operator, Whis ∈ Rd×2d and bhis ∈ Rd are train-
able parameters. We use a linear layer with tanh activation to
aggregate the query’s information. The output of the linear
layer is then multiplied by E to obtain an |E|-dimensional
vector, where each element represents the similarity score
between the corresponding entity o′ ∈ E and the query q.
Then, according to the copy mechanism, we add the copy-
term Zs,p

t to change the index scores of historical entities in
Hs,p

his to higher values directly without contributing to the
gradient update. Thus, Zs,p

t makes Hs,p
his pay more atten-

tion to historical entities. Similarly, for non-historical depen-
dency, the latent context vector Hs,p

nhis is defined as:

Hs,p
nhis = tanh(Wnhis(s⊕ p) + bnhis)ET − Zs,p

t . (7)

Contrary to historical dependency (Equation 6), subtract-
ing Zs,p

t makes Hs,p
nhis focus on non-historical entities. The

training objective of learning from both historical and non-
historical events is to minimize the following loss Lce:

Lce = −
∑
q

log{
exp(Hs,p

his(oi))∑
oj∈E

exp(Hs,p
his(oj))

+
exp(Hs,p

nhis(oi))∑
oj∈E

exp(Hs,p
nhis(oj))

},

(8)
where oi denotes the ground truth object entity of the given
query q. The purpose of Lce is to separate ground truth from
others by comparing each scalar value in Hs,p

his and Hs,p
nhis.

During the inference, CENET combines the softmax re-
sults of the above two latent context vectors as the predicted
probabilities Ps,p

t over all object entities:

Ps,p
t =

1

2
{softmax(Hs,p

his) + softmax(Hs,p
nhis)}, (9)

where the entity with maximum value is the most likely en-
tity the component predicts.

3.3 Historical Contrastive Learning
Clearly, the learning mechanism defined above well captures
the historical and non-historical dependency for each query.
However, many repetitive and periodic events are only asso-
ciated with historical entities. Besides, for new events, ex-
isting models are likely to ignore those entities with less
historical interaction and predict the wrong entities that fre-
quently interact with other events. The proposed histori-
cal contrastive learning trains contrastive representations of
queries to identify a small number of highly correlated enti-
ties at the query level.

Specifically, the training process of supervised contrastive
learning (Khosla et al. 2020) consists of two stages. We first
introduce Iq to indicate whether the missing object is inHs,p

t
for query q. In other words, if Iq is equal to 1, the missing
object of the given query q is in Hs,p

t , and 0 otherwise. The
aim of the two stages is to train a binary classifier which
infers the value of such boolean scalar for query q.

Stage 1: Learning Contrastive Representations. In the
first stage, the model learns the contrastive representations
of queries by minimizing supervised contrastive loss, which
takes whether Iq is positive as the training criterion to sepa-
rate representations of different queries as far as possible in
semantic space. Let vq be the embedding vector (represen-
tation) of the given query q:

vq = MLP (s⊕ p⊕ tanh(WF Fs,p
t )), (10)

where the query’s information is encoded by an MLP to nor-
malize and project the embedding onto the unit sphere for
further contrastive training. Let M denote the minibatch,
Q(q) denote the set of queries in the M except q whose
boolean labels are the same as Iq , given as:

Q(q) =
⋃

m∈M\{q}

{m|Im = Iq}. (11)

The detail of computing supervised contrastive loss Lsup

in the first stage is as follows:

Lsup =
∑
q∈M

−1
|Q(q)|

∑
k∈Q(q)

log
exp(vq · vk/τ)∑

a∈M\{q}
(vq · va/τ)

, (12)

where, WF ∈ Rd×|E| is the trainable parameter, τ ∈ R+ is
the temperature parameter set to 0.1 in experiments as rec-
ommended in the previous work (Khosla et al. 2020). The
objective of Lsup is to make the representations of the same
category closer. It should be noted that the contrastive super-
vised loss Lsup and the previous cross-entropy-like loss Lce

are trained simultaneously.
Stage 2: Training Binary Classifier. When the training

of the first stage is finished, CENET freezes the weights of
corresponding parameters including E, P and their encoders
in the first stage. Then it feeds vq to a linear layer to train
a binary classifier with cross-entropy loss according to the
ground truth Iq , which is trivial to mention. Now, the classi-
fier can recognize whether the missing object entity of query
q exists in the set of historical entities.

In the process of reasoning, a boolean mask vector Bs,p
t ∈

R|E| is generated to identify which kind of entities should
be concerned according to the predicted Îq and whether o ∈
Hs,p

t is true:

Bs,p
t (o) = Φo∈Hs,p

t =Îq
. (13)

The probabilities of entities in all positive positions
(Bs,p

t (o) = 1) will be further increased, and vice versa. In
other words, if the missing object is predicted to be inHs,p

t ,
then entities in the historical set will receive more attention.
Otherwise, those entities outside the historical set are more
likely to be attended.
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Algorithm 1: Learning algorithm of CENET
Input: Observed graph quadruples set G, entity set E , rela-
tion type setR, hyper-paratermeter α, and λ.
Output: A trained network.

1: Initiate parameters of network Net;
2: for each (s, p, o, t) in G do
3: ComputeHs,p

t , Fs,p
t , and Zs,p

t for query (s, p, ?, t) ac-
cording to Eq.3, 4, and 5 respectively;

4: Label Iq for query (s, p, ?, t) usingHs,p
t ;

5: end for
6: while loss does not converge do
7: Compute Hs,p

his and Hs,p
nhis using Zs,p

t according to
Eq.6 and 7 for each (s, p, o, t) in G;

8: Compute vq using Fs,p
t according to Eq.10;

9: Compute Lce using Hs,p
his and Hs,p

nhis according to
Eq.8;

10: Compute Lsup using vq according to Eq.12;
11: L ← α · Lce + (1− α) · Lsup;
12: Optimize Net according to L;
13: end while
14: Freeze parameters of Net except the classification layer

in the second stage;
15: Train the classification layer in Net according to Iq and

vq with binary cross-entropy;
16: return Net;

3.4 Parameter Learning and Inference
We minimize the loss function in the first stage:

L = α · Lce + (1− α) · Lsup, (14)
where α is a hyper-parameter ranging from 0 to 1 to bal-
ance different losses. As to the second stage, we choose bi-
nary cross-entropy with sigmoid activation to train the bi-
nary classifier. Taking the prediction of object entities as an
example, the detailed training process of CENET is provided
in Algorithm 1 (See Appendix 2 for the computational com-
plexity). Such a training process is also used to predict the
missing subject entities in the experiments.

As can be seen from Figure 2, the middle part illustrates
the inference process that receives the distribution Ps,p

t and
the mask vector Bs,p

t from both sides respectively. Then,
CENET will choose the object with the highest probability
as the final prediction ô:

P(o|s, p,Fs,p
t ) = Ps,p

t (o) · Bs,p
t (o), (15)

ô = argmaxo∈EP(o|s, p,Fs,p
t ). (16)

Additionally, it is possible that a poor classifier of the sec-
ond stage of historical contrastive learning may deteriorate
the performance when wrongly masking the expected object
entities. Thus, there is a compromised substitution:

P(o|s, p,Fs,p
t ) = Ps,p

t (o) · softmax(Bs,p
t )(o). (17)

We call the former version in Equation 15 hard-mask, the
latter in Equation 17 soft-mask. The hard-mask can reduce
the search space and the soft-mask can obtain a more con-
vincing distribution which makes the model more conserva-
tive.

4 Experiments
This section conducts a series of experiments to validate the
performance of CENET. We first present the experimental
settings and then compare CENET with a wide selection of
TKG models. After that, the ablation study is implemented
to evaluate the effectiveness of various components. Finally,
the analysis of hyper-parameter is discussed. All our datasets
and codes are publicly available1.

4.1 Experimental Settings
Datasets and Baselines We select five benchmark
datasets, including three event-based TKGs and two public
KGs. These two types of datasets are constructed in differ-
ent ways. The former three event-based TKGs consist of In-
tegrated Crisis Early Warning System (ICEWS18 (Boschee
et al. 2015) and ICEWS14 (Trivedi et al. 2017)) and Global
Database of Events, Language, and Tone (GDELT (Lee-
taru and Schrodt 2013)) where a single event may hap-
pen at any time. The last two public KGs (WIKI (Leblay
and Chekol 2018) and YAGO (Mahdisoltani, Biega, and
Suchanek 2014)) consist of temporally associated facts
which last a long time and hardly occur in the future. Ta-
ble 1 provides the statistics of these datasets.

Dataset Entities Relation Training Validation Test
ICEWS18 23,033 256 373,018 45,995 49,545
ICEWS14 12,498 260 323,895 - 341,409
GDELT 7,691 240 1,734,399 238,765 305,241
WIKI 12,554 24 539,286 67,538 63,110
YAGO 10,623 10 161,540 19,523 20,026

Table 1: Statistics of the datasets.

CENET is compared with 15 up-to-date knowledge graph
reasoning models, including static and temporal approaches.
Static methods include TransE (Bordes et al. 2013), Dist-
Mult (Yang et al. 2015), ComplEx (Trouillon et al. 2016),
R-GCN (Schlichtkrull et al. 2018), and ConvE (Dettmers
et al. 2018). Temporal models include TeMP (Wu et al.
2020), RE-NET (Jin et al. 2020), xERTE (Han et al. 2020),
TLogic (Liu et al. 2022), RE-GCN (Li et al. 2021b),
TANGO-TuckER (Han et al. 2021), TANGO-Distmult (Han
et al. 2021), CyGNet (Zhu et al. 2021), EvoKG (Park et al.
2022), and HIP (He et al. 2021).

Training Settings and Evaluation Metrics All datasets
except ICEWS14 are split into training set (80%), validation
set (10%), and testing set (10%). The original ICEWS14 is
not provided with a validation set. We report a widely used
filtered version (Jin et al. 2020; Han et al. 2020; Zhu et al.
2021; He et al. 2021) of Mean Reciprocal Ranks (MRR) and
Hits@1/3/10 (the proportion of correct predictions ranked
within top 1/3/10). As to model configurations, we set the
batch size to 1024, embedding dimension to 200, learning
rate to 0.001, and use Adam optimizer. The training epoch
for L is limited to 30, and the epoch for the second stage

1https://github.com/xyjigsaw/CENET

4769



Method ICEWS18 ICEWS14 GDELT

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 17.56 2.48 26.95 43.87 18.65 1.12 31.34 47.07 16.05 0.00 26.10 42.29
DistMult 22.16 12.13 26.00 42.18 19.06 10.09 22.00 36.41 18.71 11.59 20.05 32.55
ComplEx 30.09 21.88 34.15 45.96 24.47 16.13 27.49 41.09 22.77 15.77 24.05 36.33
R-GCN 23.19 16.36 25.34 36.48 26.31 18.23 30.43 45.34 23.31 17.24 24.96 34.36
ConvE 36.67 28.51 39.80 50.69 40.73 33.20 43.92 54.35 35.99 27.05 39.32 49.44

TeMP 40.48 33.97 42.63 52.38 43.13 35.67 45.79 56.12 37.56 29.82 40.15 48.60
RE-NET 42.93 36.19 45.47 55.80 45.71 38.42 49.06 59.12 40.12 32.43 43.40 53.80
xERTE 36.95 30.71 40.38 49.76 32.92 26.44 36.58 46.05 ≫ 1 day
TLogic 37.52 30.09 40.87 52.27 38.19 32.23 41.05 49.58 22.73 17.65 24.66 32.59

RE-GCN 32.78 24.99 35.54 48.01 32.37 24.43 35.05 48.12 29.46 21.74 32.01 43.62
TANGO-TuckER 44.56 37.87 47.46 57.06 46.42 38.94 50.25 59.80 38.00 28.02 43.91 53.70
TANGO-Distmult 44.00 38.64 45.78 54.27 46.68 41.20 48.64 57.05 41.16 35.11 43.02 52.58

CyGNet 46.69 40.58 49.82 57.14 48.63 41.77 52.50 60.29 50.29 44.53 54.69 60.99
EvoKG 29.67 12.92 33.08 58.32 18.30 6.30 19.43 39.37 11.29 2.93 10.84 25.44

HIP 48.37 43.51 51.32 58.49 50.57 45.73 54.28 61.65 52.76 46.35 55.31 61.87

CENET 51.06 47.10 51.92 58.82 53.35 49.61 54.07 60.62 58.48 55.99 58.63 62.96

Table 2: Experimental results of temporal link prediction on three event-based TKGs. ≫ 1 day means running time is more
than 1 day. The best results are boldfaced, and the results of previous SOTAs are underlined.

of contrastive learning is limited to 20. The value of hyper-
parameter α is set to 0.2, and λ is set to 2. For the settings of
baselines, we use their recommended configurations.

4.2 Results
Results on Event-based TKGs Table 2 presents the
MRR and Hits@1/3/10 results of link (event) prediction on
three event-based TKGs. Our proposed CENET outperforms
other baselines in most cases. It can be observed that many
static models are inferior to temporal models because static
models do not consider temporal information and their de-
pendency between different snapshots. In the case of tem-
poral models, TeMP is designed to complete missing links
(graph interpolation) rather than predict new events, and it
thus shows worse performance than extrapolation models.
Although xERTE provides a certain degree of predictive ex-
plainability, it is computationally inefficient to handle large-
scale datasets such as GDELT, whose training set contains
more than 1 million samples. In terms of Hits@10, CENET
is on par with HIP on these three event-based datasets.
Nevertheless, the results of Hits@1 improve the most in
our model. CENET achieves up to 8.25%, 8.48%, and
20.80% improvements of Hits@1 on ICEWS18, ICEWS14,
and GDELT respectively. The main reason is that there exist
a large proportion of new events without historical events
in event-based datasets. CENET learns the historical and
non-historical dependency of new events simultaneously,
which mines those unobserved underlying factors. In con-
trast, models including TANGO and HIP perform well in
terms of Hits@10 but cannot predict the correct entities ex-
actly, making Hits@1 much lower than ours.

Results on Public KGs CENET also outperforms the
baselines in all metrics on WIKI and YAGO. As can be
seen from Table 3, CENET significantly achieves the im-
provements up to 23.68% (MRR), 25.77% (Hits@1), and

Method WIKI YAGO

MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

TransE 46.68 36.19 49.71 48.97 46.23 62.45
DistMult 46.12 37.24 49.81 59.47 52.97 60.91
ComplEx 47.84 38.15 50.08 61.29 54.88 62.28
R-GCN 37.57 28.15 39.66 41.30 32.56 44.44
ConvE 47.57 38.76 50.10 62.32 56.19 63.97

TeMP 49.61 46.96 50.24 62.25 55.39 64.63
RE-NET 51.97 48.01 52.07 65.16 63.29 65.63
xERTE ≫ 1 day 58.75 58.46 58.85
TLogic 57.73 57.43 57.88 1.29 0.49 0.85

RE-GCN 44.86 39.82 46.75 65.69 59.98 68.70
TANGO-TuckER 53.28 52.21 53.61 67.21 65.56 67.59
TANGO-Distmult 54.05 51.52 53.84 68.34 67.05 68.39

CyGNet 45.50 50.48 50.79 63.47 64.26 65.71
EvoKG 50.66 12.21 63.84 55.11 54.37 81.38

HIP 54.71 53.82 54.73 67.55 66.32 68.49

CENET 68.39 68.33 68.36 84.13 84.03 84.23

Table 3: Experimental results of temporal link prediction on
two public KGs. See Appendix for more results.

7.08% (Hits@3) over SOTA on public KGs. This is be-
cause the recurrence rates in these two datasets are imbal-
anced (Zhu et al. 2021), and our model can easily handle
such data. In terms of the WIKI dataset, 62.3% object en-
tities associated with their corresponding facts (grouped by
(subject, relation) tuples) have appeared repeatedly at least
once in history. In contrast, the recurrence rate of subject en-
tities (grouped by (object, relation) tuples) is 23.4%, which
hinders many models learning from the historical informa-
tion when inferring subject entities. CENET can effectively
alleviate the problem of the imbalanced recurrence rate be-
cause the concurrent learning of historical and non-historical
dependency can complement each other to generate the en-
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Method ICEWS18 YAGO

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CENET-his 50.65 47.15 51.23 57.42 71.64 70.24 71.81 74.39
CENET-nhis 31.75 24.22 34.01 46.69 61.73 59.64 62.50 65.38
CENET-Lce (w/o-stage-1) 50.59 46.47 51.58 58.58 75.25 73.96 75.55 77.52
CENET-w/o-stage-2 50.32 46.30 51.29 58.16 77.53 76.12 78.04 79.84
CENET-w/o-CL 49.98 45.89 50.74 57.81 73.29 71.87 73.64 75.90
CENET-random-mask 26.80 24.42 27.47 31.60 39.07 38.31 39.28 40.41
CENET-hard-mask 49.66 46.69 50.78 55.75 84.13 84.03 84.23 84.24
CENET-soft-mask 51.06 47.10 51.92 58.82 80.03 79.09 80.30 81.57

CENET-GT-mask 52.75 48.21 53.97 61.84 84.73 84.31 84.76 85.34

Table 4: Ablation study of CENET on ICEWS18 and YAGO.

tity distribution. Also, the probability of selecting unrelated
entities is greatly reduced on account of the binary classifier
regardless of the imbalanced recurrence rate.

4.3 Ablation Study
We choose ICEWS18 and YAGO to investigate the effective-
ness of the historical/non-historical dependency, contrastive
learning, and the mask-based inference. Table 4 shows the
results of ablation.

CENET-his only considers the historical dependency
while CENET-nhis keeps the non-historical dependency.
Both of them employ the contrastive learning. The perfor-
mance of CENET-his is better than CENET-nhis since most
events can be traced to their historical events especially in
event-based TKGs. Still, for CENET-nhis, it also works on
event prediction to a certain extent. Thus, it is necessary to
consider both dependencies at the same time. We remove
Lsup and only retain Lce as the variant CENET-Lce. In the
case of ICEWS18, the Lce is capable of achieving high
results close to the proposed CENET, while the results in
YAGO have dropped about 7%. Such results verify the
positive influence of the stage 1 in the historical contrastive
learning. CENET-w/o-stage-2 is another variant that mini-
mizes Lce and Lsup without training the binary classifier,
which naturally discards the mask-based inference. Such
changes cause 1.7% and 3.8% drop in terms of Hits@1
on ICEWS18 and YAGO respectively. CENET-w/o-CL re-
moving the historical contrastive learning has worse per-
formance than the above two variants. These results prove
the significance of our proposed historical contrastive learn-
ing. As to the mask strategy. The mask vector is a ran-
domly generated boolean vector in CENET-random-mask.
CENET-hard-mask and CENET-soft-mask are our proposed
two ways to tackle the mask vector. We use the ground truth
in the testing set to generate a mask vector represented by
CENET-GT-mask to explore the upper bound of CENET.
We can see that untrained model with randomly generated
mask vector is counterproductive to the prediction.

4.4 Hyper-parameter Analysis
There are two unexplored hyper-parameters α and λ in
CENET. We adjust the values of α and λ respectively to
observe the performance change of CENET on ICEWS18
and YAGO. The results are shown in Figure 3. The hyper-
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Figure 3: Results of hyper-parameters α and λ of CENET
on ICEWS18 and YAGO.

parameter α aims at balancing the contribution of Lce and
Lsup. Due to the difference of characteristics between event-
based TKGs and public KGs, the hyper-parameter α ranging
from 0 to 1 leads to different results on these two kinds of
datasets. Specifically, Lce contributes more to event-based
TKGs, while Lsup is more friendly to public KGs. Consid-
ering that if we removeLce i.e. set α to 0, then we cannot ob-
tain the final probability P(o|s, p,Fs,p

t ) (and P(s|o, p,Fo,p
t ))

for inference. To this end, we set α to 0.2. With regard to the
hyper-parameter λ, we first fix the value of hyper-parameter
α, then the λ is analyzed. We can see that the higher the
value of λ, the better the result on YAGO, whereas the worse
the result on ICEWS18. Therefore, λ is set to 2.

5 Conclusion and Future Work
In this paper, we propose a novel temporal knowledge graph
representation learning model, Contrastive Event Network
(CENET), for event forecasting. The key idea of CENET
is to learn a convincing distribution of the whole entity set
and identify significant entities from both historical and non-
historical dependency in the framework of contrastive learn-
ing. The experimental results present that CENET outper-
forms all existing methods in most metrics significantly, es-
pecially for Hits@1. Promising future work includes explor-
ing the ability of contrastive learning in knowledge graph,
such as finding more reasonable contrastive pairs.
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